注册
CN
科译新闻资讯



当前位置: 首页 >> 新闻资讯>> 新闻详情

中国器审浅谈增材制造用金属粉末工艺和性能及其对终产品的影响

文章来源: 作者:中国器审中心 发布日期:2022-05-09 浏览次数: 1385 次

  随着医学影像学和数字化的快速发展,个性化、精准化成为骨科发展的一个重要方向,增材制造技术是实现骨科手术个性化和精准化的一种有效手段。骨科植入物制造商通过增材制造技术制造的类似于骨小梁多孔结构的金属髋臼杯、人工椎体和椎间融合器已获准上市。目前,应用于骨科植入物的增材制造产品主要是以Ti-6Al-4V钛合金粉末为原材料的电子束熔融(EBM)和激光选区熔融(SLM)技术制造。金属粉末的颗粒形貌、粒径分布和流动性等性能对于增材制造终产品的性能具有重要影响,本文旨在简要介绍增材制造用金属粉末的制备工艺和粉末的关键性能及其对终产品的影响。

骨科植入物的增材制造产品过程.png
   图1 骨科植入物的增材制造产品过


一、金属粉末制备工艺


  金属粉末的制备过程是将经过冶炼的合金原料(锭、棒或丝等)高温熔融,再雾化形成粉末。目前,主要的制备工艺方法为水雾化法、气雾化法(Electrode Induction-melting Gas Atomization,电极感应加热气雾化法)、等离子体雾化法、等离子体旋转电极雾化法(Plasma rotating electrode process)以及氢化-脱氢法等。

增材制造用金属粉末的制备工艺.png
   表1 增材制造用金属粉末的制备工艺


  气雾化法是将原料在空气、惰性气体下或在真空条件下熔融,随后熔融合金流体通过高速空气、氮气、氦气或氩气喷嘴雾化成颗粒。粉末颗粒大多呈球形,存在一些不规则的颗粒,颗粒粒径范围为0~500μm。在20~150μm范围内的粉体产量在总产量的10%~50%之间波动。

气体雾化过程.png
   图2 气体雾化过程


  等离子雾化法是以冶炼合金丝材或者经过破碎处理的粉末为原料,在等离子弧和气体喷枪的作用下雾化成颗粒。粒径分布为0~200μm,颗粒球形度好。等离子体旋转电极雾化法是在等离子雾化法基础上改用棒材为原料,进料过程中旋转棒材,形成的颗粒在接触到腔体之前已经固化,因此粉末的纯度高。颗粒粒径在100μm以下,生产成本很高。

等离子体雾化过程.png
   图3 等离子体雾化过程


  虽然水雾化法和氢化-脱氢法制备粉末成本更低,但是这两种方法制备的颗粒形貌为不规则的,因此,在增材制造领域应用较为有限。从图4中可以看出,气雾化法制备的Ti-6Al-4V粉末形貌近似于球体,而等离子体旋转电极雾化法制备的Ti-6Al-4V粉末纯度高,颗粒形貌高度球体化。

不同制备工艺Ti-6Al-4V粉末扫描电镜SEM图: (a) 水雾化法; (b) 气雾化法; (c) 等离子体雾化法; (d) 等离子体旋转电极雾化法。.png
   图4 不同制备工艺Ti-6Al-4V粉末扫描电镜SEM图: (a) 水雾化法; (b) 气雾化法; (c) 等离子体雾化法; (d) 等离子体旋转电极雾化法。


二、粉末特性的关键指标


  增材制造产品的质量可以从以下几个方面综合评价:工件的致密度、尺寸精度、表面光洁度、打印速度以及机械性能。由于铺粉(powder bed)和增材制造设备参数联系紧密,为达到良好的产品质量,必须保证铺粉的粉末特性(characteristics of the powder bed)和增材制造设备参数的稳定性和一致性。目前,影响粉末特性的关键指标及测试表征方法主要有以下几个:

关键指标及测试表征方法.png
   表2 关键指标及测试表征方法


  ASTM F3049-14标准规定了增材制造金属粉末性能的测试项目,包括粉末粒度分布(ISO 13320-1,激光粒度仪测试法;ISO 4497,筛分法)、松装密度(ISO 3923-1和ISO 3923-2,评价粉体堆积密度)、流动性(ASTM B213,ASTM B964)等。


  (1)颗粒形貌(Particle Morphology)
  颗粒形貌对粉体的堆积密度和流动性能有很大影响。与不规则的颗粒相比,球状的或规则的等轴颗粒倾向于有序紧密堆积。研究表明,颗粒形貌对铺粉的堆积密度进而对打印工件的密度有显著影响,颗粒形貌越不规则,颗粒的堆积密度越低,导致增材制造产品存在缺陷。

颗粒堆积对增材制造成品致密度的影响.png
   图5 颗粒堆积对增材制造成品致密度的影响


  (2)粒径分布(Particle Size Distribution)
  在能量源束斑直径一定的条件下,粒径分布决定了最小打印层厚度和工件细节尺寸的精度。粒径越小,工件尺寸精度越高,但是由于铺层厚度小,打印工件的效率低。在增材制造实体结构时,大球体堆积形成框架,小球体填充大球体之间的孔隙,从而形成相对致密的结构。因此,致密的材料结构需要不同粒径的粉体,通常选用不同粒径的粉体按照一定体积分数进行混合。
  通常,EBM使用的粉末粒径分布在45~106μm,SLM使用的粉末粒径分布更窄,介于15~45μm。粉末粒径分布对打印构件的最小层厚度和最精细细节的分辨率都有显著的影响。但是,更细粉末的使用增加了健康和安全问题的风险。在处理活性材料(如钛)时尤其如此,因为这些材料的细小颗粒可能更易燃易爆。


  (3)粉体堆积和流动性能(Bulk Packing and Flow Properties)
  对于增材制造技术,粉体的流动性是极其重要的性能指标,进料粉末精确地堆积薄而均匀的粉末层,粉末层之间融化决定了工件密度的均匀性。与流动性好的粉体相比,机械刮辊容易将粉床上团聚形成的粗大粉末推出粉床,会导致原堆积位置留下空位,由于粉体流动性较差不能回填形成的孔洞,最终可能导致打印终产品质量下降(内部形成孔洞),见图6。粉体的流动性应遵循以下几个规则:
  (a) 球形粉末颗粒比不规则或有棱角的粉末具有更好地流动性;
  (b) 颗粒粒径对于其流动性有很大影响,颗粒尺寸大的比尺寸小的流动性更好;
  (c) 由于颗粒间的毛细作用,粉末的湿度会降低其流动性;
  (d) 在测量流动性的时候,粉末的流动性与粉末堆积密度相关,堆积密度高的粉末流动性比堆积密度低的差;
  (e) 相邻颗粒间的吸引力如范德华力和静电力会影响粉末的流动性或造成粉末团聚,对于粒径越小的粉末该作用力越明显。

增材制造终产品中的孔隙.png
   图6 增材制造终产品中的孔隙


  (4)化学成分
  氮元素和氧元素作为合金间隙原子,对于增材制造钛合金的性能有很大影响。例如,Ti-6Al-4V和纯钛的抗拉强度和延伸率受O元素含量的影响,随着O含量的增加,抗拉强度增加但是延伸率显著降低,终产品容易发生脆性断裂,见图7。

不同O含量增材制造钛合金和纯钛成品力学性能变化:(a)维氏硬度;(b)抗拉强度;(c)断裂伸长率.png
   图7 不同O含量增材制造钛合金和纯钛成品力学性能变化:(a)维氏硬度;(b)抗拉强度;(c)断裂伸长率


  参考文献:
  [1] I. Gibson, D. W. Rosen and B. Stucker. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing [M]. Springer, New York, USA, 2010.
  [2] R. M. German. Powder Metallurgy Science [M]. Metal Powder Industries Federation, Princeton, New Jersey, USA, 1994, pp. 9-58.
  [3] J. M. Oh, B. G. Lee, S.-W. Cho. Oxygen Effects on the Mechanical Properties and Lattice Strain of Ti and Ti-6Al-4V [J]. Metals and Materials International. 2011, 17, (5), 733.
  [4] Jason Dawes, Robert Bowerman, Ross Trepleton. Introduction to the Additive Manufacturing Powder Metallurgy Supply Chain [J]. Johnson Matthey Technology Review. 2015, 59(3): 243-256.



热门资讯

中国器审浅谈增材制造用金属粉末工艺和性能及其对终产品的影响
文章来源: 作者:中国器审中心 发布日期:2022-05-09 浏览次数: 1385 次

  随着医学影像学和数字化的快速发展,个性化、精准化成为骨科发展的一个重要方向,增材制造技术是实现骨科手术个性化和精准化的一种有效手段。骨科植入物制造商通过增材制造技术制造的类似于骨小梁多孔结构的金属髋臼杯、人工椎体和椎间融合器已获准上市。目前,应用于骨科植入物的增材制造产品主要是以Ti-6Al-4V钛合金粉末为原材料的电子束熔融(EBM)和激光选区熔融(SLM)技术制造。金属粉末的颗粒形貌、粒径分布和流动性等性能对于增材制造终产品的性能具有重要影响,本文旨在简要介绍增材制造用金属粉末的制备工艺和粉末的关键性能及其对终产品的影响。

骨科植入物的增材制造产品过程.png
   图1 骨科植入物的增材制造产品过


一、金属粉末制备工艺


  金属粉末的制备过程是将经过冶炼的合金原料(锭、棒或丝等)高温熔融,再雾化形成粉末。目前,主要的制备工艺方法为水雾化法、气雾化法(Electrode Induction-melting Gas Atomization,电极感应加热气雾化法)、等离子体雾化法、等离子体旋转电极雾化法(Plasma rotating electrode process)以及氢化-脱氢法等。

增材制造用金属粉末的制备工艺.png
   表1 增材制造用金属粉末的制备工艺


  气雾化法是将原料在空气、惰性气体下或在真空条件下熔融,随后熔融合金流体通过高速空气、氮气、氦气或氩气喷嘴雾化成颗粒。粉末颗粒大多呈球形,存在一些不规则的颗粒,颗粒粒径范围为0~500μm。在20~150μm范围内的粉体产量在总产量的10%~50%之间波动。

气体雾化过程.png
   图2 气体雾化过程


  等离子雾化法是以冶炼合金丝材或者经过破碎处理的粉末为原料,在等离子弧和气体喷枪的作用下雾化成颗粒。粒径分布为0~200μm,颗粒球形度好。等离子体旋转电极雾化法是在等离子雾化法基础上改用棒材为原料,进料过程中旋转棒材,形成的颗粒在接触到腔体之前已经固化,因此粉末的纯度高。颗粒粒径在100μm以下,生产成本很高。

等离子体雾化过程.png
   图3 等离子体雾化过程


  虽然水雾化法和氢化-脱氢法制备粉末成本更低,但是这两种方法制备的颗粒形貌为不规则的,因此,在增材制造领域应用较为有限。从图4中可以看出,气雾化法制备的Ti-6Al-4V粉末形貌近似于球体,而等离子体旋转电极雾化法制备的Ti-6Al-4V粉末纯度高,颗粒形貌高度球体化。

不同制备工艺Ti-6Al-4V粉末扫描电镜SEM图: (a) 水雾化法; (b) 气雾化法; (c) 等离子体雾化法; (d) 等离子体旋转电极雾化法。.png
   图4 不同制备工艺Ti-6Al-4V粉末扫描电镜SEM图: (a) 水雾化法; (b) 气雾化法; (c) 等离子体雾化法; (d) 等离子体旋转电极雾化法。


二、粉末特性的关键指标


  增材制造产品的质量可以从以下几个方面综合评价:工件的致密度、尺寸精度、表面光洁度、打印速度以及机械性能。由于铺粉(powder bed)和增材制造设备参数联系紧密,为达到良好的产品质量,必须保证铺粉的粉末特性(characteristics of the powder bed)和增材制造设备参数的稳定性和一致性。目前,影响粉末特性的关键指标及测试表征方法主要有以下几个:

关键指标及测试表征方法.png
   表2 关键指标及测试表征方法


  ASTM F3049-14标准规定了增材制造金属粉末性能的测试项目,包括粉末粒度分布(ISO 13320-1,激光粒度仪测试法;ISO 4497,筛分法)、松装密度(ISO 3923-1和ISO 3923-2,评价粉体堆积密度)、流动性(ASTM B213,ASTM B964)等。


  (1)颗粒形貌(Particle Morphology)
  颗粒形貌对粉体的堆积密度和流动性能有很大影响。与不规则的颗粒相比,球状的或规则的等轴颗粒倾向于有序紧密堆积。研究表明,颗粒形貌对铺粉的堆积密度进而对打印工件的密度有显著影响,颗粒形貌越不规则,颗粒的堆积密度越低,导致增材制造产品存在缺陷。

颗粒堆积对增材制造成品致密度的影响.png
   图5 颗粒堆积对增材制造成品致密度的影响


  (2)粒径分布(Particle Size Distribution)
  在能量源束斑直径一定的条件下,粒径分布决定了最小打印层厚度和工件细节尺寸的精度。粒径越小,工件尺寸精度越高,但是由于铺层厚度小,打印工件的效率低。在增材制造实体结构时,大球体堆积形成框架,小球体填充大球体之间的孔隙,从而形成相对致密的结构。因此,致密的材料结构需要不同粒径的粉体,通常选用不同粒径的粉体按照一定体积分数进行混合。
  通常,EBM使用的粉末粒径分布在45~106μm,SLM使用的粉末粒径分布更窄,介于15~45μm。粉末粒径分布对打印构件的最小层厚度和最精细细节的分辨率都有显著的影响。但是,更细粉末的使用增加了健康和安全问题的风险。在处理活性材料(如钛)时尤其如此,因为这些材料的细小颗粒可能更易燃易爆。


  (3)粉体堆积和流动性能(Bulk Packing and Flow Properties)
  对于增材制造技术,粉体的流动性是极其重要的性能指标,进料粉末精确地堆积薄而均匀的粉末层,粉末层之间融化决定了工件密度的均匀性。与流动性好的粉体相比,机械刮辊容易将粉床上团聚形成的粗大粉末推出粉床,会导致原堆积位置留下空位,由于粉体流动性较差不能回填形成的孔洞,最终可能导致打印终产品质量下降(内部形成孔洞),见图6。粉体的流动性应遵循以下几个规则:
  (a) 球形粉末颗粒比不规则或有棱角的粉末具有更好地流动性;
  (b) 颗粒粒径对于其流动性有很大影响,颗粒尺寸大的比尺寸小的流动性更好;
  (c) 由于颗粒间的毛细作用,粉末的湿度会降低其流动性;
  (d) 在测量流动性的时候,粉末的流动性与粉末堆积密度相关,堆积密度高的粉末流动性比堆积密度低的差;
  (e) 相邻颗粒间的吸引力如范德华力和静电力会影响粉末的流动性或造成粉末团聚,对于粒径越小的粉末该作用力越明显。

增材制造终产品中的孔隙.png
   图6 增材制造终产品中的孔隙


  (4)化学成分
  氮元素和氧元素作为合金间隙原子,对于增材制造钛合金的性能有很大影响。例如,Ti-6Al-4V和纯钛的抗拉强度和延伸率受O元素含量的影响,随着O含量的增加,抗拉强度增加但是延伸率显著降低,终产品容易发生脆性断裂,见图7。

不同O含量增材制造钛合金和纯钛成品力学性能变化:(a)维氏硬度;(b)抗拉强度;(c)断裂伸长率.png
   图7 不同O含量增材制造钛合金和纯钛成品力学性能变化:(a)维氏硬度;(b)抗拉强度;(c)断裂伸长率


  参考文献:
  [1] I. Gibson, D. W. Rosen and B. Stucker. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing [M]. Springer, New York, USA, 2010.
  [2] R. M. German. Powder Metallurgy Science [M]. Metal Powder Industries Federation, Princeton, New Jersey, USA, 1994, pp. 9-58.
  [3] J. M. Oh, B. G. Lee, S.-W. Cho. Oxygen Effects on the Mechanical Properties and Lattice Strain of Ti and Ti-6Al-4V [J]. Metals and Materials International. 2011, 17, (5), 733.
  [4] Jason Dawes, Robert Bowerman, Ross Trepleton. Introduction to the Additive Manufacturing Powder Metallurgy Supply Chain [J]. Johnson Matthey Technology Review. 2015, 59(3): 243-256.



我们的优势
16年医疗、知识产权领域翻译经验
16年医疗、知识产权领域翻译经验
自成立以来,CODEX 一直深耕医疗、知识产权领域翻译,高品质的翻译和服务,是CODEX得以持续发展的源动力。
专业的精英团队
专业的精英团队
CODEX的团队是由留学归国人员、重点高校毕业的研究生、专业的母语籍译员以及医学行业的专家顾问组成。
权威的质量认证体系
权威的质量认证体系
通过国际ISO17100:2015,ISO18587:2017, ISO9001:2015, ISO14001:2015, ISO 13485:2016等多项通过国际级别认证,服务多家国际著名的医药企业。
严格的管控流程
严格的管控流程
CODEX制定了完善的翻译质量保证体系和系统化的运作流程,严格采取一译、二改、三校、四审的工作程序。
绝佳的员工素质
绝佳的员工素质
我们中的每一位都经过严格的考核和挑选,精通医学翻译工作,形象佳责任心强,并严格遵循保密制度。
客户支持
客户支持
“精益求精,至善至美”科译质量和实力以及严格的保密制度倾心为您服务。
联系我们
CODEX科译在您身边

北京科译翻译有限公司

400-136-8786

我们将全天候为您服务
我们是谁
16年来,CODEX是一直致力于提供生命科学翻译和本地化服务的公司,是国内为数不多的通过国家ISO17100:2015认证的医学翻译提供商。
会员注册
发送验证码
注册
已有账号?点击登录
账号登录
短信登录
登录
没有账号?点击注册
发送验证码
登录
没有账号?点击注册
扫码二维码
CODEX微信公众号
添加微信
CODEX翻译客服
联系我们
400-136-8786
邮箱
Info@codex-trans.com